

HYDROLOGICAL CHARACTERIZATION AND INSTRUMENTAL DETECTION OF LAHARS ON ACTIVE VOLCANOES IN MEXICO.

LUCIA CAPRA PEDOL CENTRO DE GEOCIENCIAS UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Collaborators (in chronological order): J.C. Gavilanes, L. Borselli, G. Lube, R. Vázquez, E. Surinach, M. Roverato, J. Procter., **V. Coviello**, **B. Walsh**, V.H. Vázquez, **B. Ruf, I. Martínez**, R. Arambula

Lahar monitoring in Mexico

Lahar: a volcanic debris flow

Popocatépetl volcano

MOTIVATION:

- ✓ At least 20 events a year
- Damages to infrastructures, several villages in a radius of 12-15 km
- ✓ Natural laboratory to study flow behavior

2001 lahar at Becerrera village, 300 inhabitants Talk overview
✓ The beginning in 2008
✓ The "evolution"
✓ What we know
✓ What next?

Common damages to infrastructure

2008, THE BEGINNING......

4 Rain gauges

Channel erosion after the 2011 Jove hurricane

Transducer pressure

Events detected by the seismic network of the volcano observatory, no images available, only one station on the channel side.

Wildlife cameral

....testing the camera

Rainfall threshold: Very difficult at the beginning of the rainy season (orographic rainfalls), no rain detected at the monitoring station

Catchment's peak discharge vs. flow-peak discharge

Real-time monitoring 2011-2019

LUMBRE, 2013

ZARCO, 2019 🚪

RESCO

6

1560 m a.s.

2024 m a.s.l.

km

2020 m a.s.l.

MERICO

n 2350 m a.s.l.

Resco BB station

MONTEGRANDE, 2011, 2015

3componen

Distal Geophone (from NZ) Now descontinued

2011, First monitoring station at Montegrande ravine

11 june 2013 300 mm of rain

Volcán de Colima 2013-06-11 17:48:54

Second main pulse The lahar lasted more than 2 hours

At 6.5 km from the crater outside the BAF inundation area..

8.27 PM first pyroclastic flow, Estimated flow velocity 7m/s

Volcán Se Colura 2013-07- 1 01.22:53

01:00

Before the 10-11 July eruption

Unespected scenario July 10-11, 2015

before

ATC ALL PROPERTY ATT A LEAST ANY ATT A LEAST ANY ANY ATT A LEAST A

14 Care

To Colves

ADATE 01403-5015

after

Montegrande ravine, 2015

Improved with:

- Raspberry Shake 4D
- DataCube+Lenn artz 3Dlite
 <u>At 500m upflow</u>
- Broad band station
- Infrasound
 Chaparrales
 At 900 m
 downflow
- DataCube+Lenn
 arrts 3Dlite

Lumbre ravine, 2013

Lumbre station, radio repeater at Nevado de Colima, 2014

1) First seismological characterization, Vázquez et al., 2016

1) Frequency content, Vázquez et al., 2016

- Blocky-front dominated by 10-20 Hz frequencies
- Main body 20-40 Hz

2) Transport and depositional processes, Vazquez et al., 2014

Volcán de Colima 2012-09-13 19:01:06

2) Transport and depositional processes

Volcán de Colima 2012-09-15 18:43:05

2) Transport and depositional processes

3) Sediment volume vs. seismic amplitude and frequency, Coviello et al., 2018, toward the warning system

3) Sediment volume vs. seismic amplitude and frequency, Coviello et al., 2018

	Amplitude (mm/s)	PSD (mm ² /s ²)	$ ho_{\rm m}~({\rm kg/m}^3)$	$\mu_{\rm m}$ (Ns/m ²)	$\tau_y (N/m^2)$
Sample at 15:57 Sample at 16:05 Sample at 16:30 Sample at 16:48	$\begin{array}{c} 2.5 \times 10^{-3} \\ 3 \times 10^{-3} \\ 0.91 \times 10^{-3} \\ 0.74 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.7 \times 10^{-5} \\ 2 \times 10^{-5} \\ 0.3 \times 10^{-4} \\ 0.1 \times 10^{-4} \end{array}$	1710 1759 1297 1248	2.75 4.79 0.03 0.02	8.39 14.09 0.11 0.07

Note: With the different value of volumetric sediment concentration C_v measured in laboratory, specific mass ρ_m , dynamic viscosity μ_m and yield stress τ_v of the four samples were calculated.

From hyperconcentrated to stream flow

3) Sediment volume vs. seismic amplitude and frequency, Coviello et al., 2018

Warning system to detect hyperconcetrated flow (Cv 0.45) Amplitude threshold 10⁻³ mm/s

5) erosion: bulking-debulking (Ivonne Martínez poster)

5) erosion: bulking-debulking

Seismic data from
 DataCube
 Lennartz 3Dlite MkIII

О

TorreMonte2015

5) erosion: bulking-debulking

Seismic data from 3 October 2018, multipulse event DataCube Lennartz 3Dlite MkIII 0.4 RESCO 0.2 0.0 -0.2 -0.4 0.20 m/sec CUBE 0.15 0.10 TorreMonte2015 0.05 S يناد الله 0.00 -0.05 -0.10 -0.15 0.20 0 500 1000 1500 2000 2500 3000 3500 0004 Tiempo [s] 6000 6500 7000 7500 5500 8000 8500 0006 estacion distal

WHAT NEXT?

Infrasound for warning system?

Analysis of the cross-channel seismic component Braden Walsh

Data from accelerometer. Flow mass? Braden Walsh

Numerical modeling to compare "synthetic" seismic signal with real signals

Geociencias UNAM

Home

2010-10-10 001 10:00:00

nde Colin

0 . .

Web page The Image refreshes each minute

1.mx

Home

2019-10-15 GMT 10:29:12

Francisco Zarco, Colima.

Miguel Resco

MNGR_Derrumbe:_201909 30T0458 MNGR_Derrumbe:_201909

30T0500 20190930T050400:MNGR

:Inicio_de_Lahar Miguel Resco

20190930T090000:MNGR :Inicio_de_Lahar

Miguel Resco

ZRCO_Derrumbe:_201909 30T0938

Miguel Resco ZRCO_Derrumbe:_201909 30T1132

11:41

0

Gracias por su atención!